Proceedings of 1AM, V.2, N.1, 2013, pp.54-59

ON AN EXTREMUM PROBLEM IN THE METRIC SPACES
H.S. Akhundov!

Institute of Applied Mathematics, Baku State University, Baku, Azerbaijan,
e-mail: axund2005@rambler.ru

Abstract. In the present paper, we study unconditional extremum problem in metric
spaces, obtained from conditional extremum problem by using the notion of covering
operators. The necessary optimality conditions for the considered problem are obtained .
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1. Introduction

Our aim in this paper is solving the unconditional extremum problem in
metric space. Using the distance function some theorems are obtained on the exact
penalty, and high order necessary and sufficient conditions are derived within
constraints. The exact penalty function is constructed [3] for the extremal
problems with constraints using the distance functions, in the class of Lipschitz
functions, which is defined for («,5,.45) and ¢—(a, 5.4 5)in [2]. In the point of

Banach space, where some properties of the penalty functions corresponding are
studied, and extremal problems with constraints are investigated.

2. Preliminary facts

Let (X,dy), (Y,dy) be metric spaces, F:X—Y operator, By (x,r) -sphere
of radius r, with the center at the point X of the space X ; B, (y,z) -sphere of
radius r, with the center at the point y of the space Y . Let U < X be open set.

We say (see [1]), that the operator F covers on the set U with the constant
a>0 if forany B, (x,r)cU the inclusion

F(Bx (x,r)) = B, (F(x),ar)
is valid.

Let’s define

dy () =inf{d, (x,y):yeM},
where M = X .
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3. Main results

Lemma 1. Let McScX and X be a minimum point of the function
f: X —>R ontheset M, the function f satisfies to the Lipschitz condition on

the set S with the constant K. Then for any K >K the function
g(y) = f(y)+Kd,, (y) reaches the minimum on the set S at the point X and if
M s closed and K > K any point minimized g(y) on set S belongs to M . Let
B(Q;5) ={xe X :d(x, Q) <5}
Proof. Let the first statement of lemma 1 be not satisfied, i.e. there exists ye S,
such that g(y)<g(X). Then there exists such yeS and &£>0 that
f(y)+Ko(y) < f(X) -Ke.

Suppose that the point C € M satisfies to the condition d(y,c) < p(y)+¢.
Then

f(c)< f(y)+Kd(y,c)< f(y)+K(p(y)+&) < f(x).

But this is contrary to the fact that X gives minimumto f intheset M .

Let K >K and y minimized the function g on S. Then

£(9)+ Kp() = £ (%)< £(7) + =X ().

From this we obtain that g(y) =0. Since M is closed set, ye M .

Lemma is proved.
Let us consider minimization of the function f:X —>R on the set

M ={xeG:F(x)=F(x,)}, where G is an open set in X and F:G—Y

operator.

Theorem 1. Let Y be Banach space, G be an open set in X, X - full metric
space, the continuous operator F:G —Y covers with a constant a >0 on the open
set Gc X; QcG bounded set; there exists a number & >0 such, that

B(Q;6) =G, {xeG:F(X)=F(x)}={xeQ:F(x)=F(x,)} ; f satisfies to the
Lipschitz condition on the set Q with the constant K and the point x, be a
minimum point of the function f on the set M ={X€QZ F(x)= F(xo)}. Then
there exists such number L >0, that x, is a minimum point for the function
f () +L|F(x)—F(x,)] ontheset Q.

Proof. Itis clear that M — Q and the conditions of lemma 1 are satisfied. Then as
follows from lemma 1 X, gives minimum to the function f(x)+ Ko(x,M) on the

set O, when K>K .
On the base of lemma 44 [1] there exists a number L such, that the inequality

p(xM) < L|F()—F (%),
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holds when x e Q. Thus, the inequality
f () +Kp(x,M) < f () + KL|F () — F (%),
also holds when xeQ. Since x, € M, we obtain that
f (%) = T (%) +Kp(xg, M) = f (%) + K|—|||:(X0) - F(Xo)" -
Then by vxeQ
f (%) = f (%) +KL|F(x0) = F (%) < f (X) + KL|F(x) = F(%,)| -
Theorem is proved.

Let X and Y Dbe Banach spaces. If A:X —Y is a linear continuous
operator and A(X) =Y, it follows from of the theorem on the open mappings that

there exists a number a >0 such, that A(B, (x,r)) o B, (Ax,ar) at xe X, r>o,
the operator A covers on X with the constant a.

Lemma 2. If X and Y are Banach spaces, G- opensetin X, F:G—>Y is
strictly differentiable, ImF'(x)=Y at X € G and H[(F’(x))*]’lu is bounded in

G, then F covers with the constant
1

GOSN

o

sup
xeG

ontheset G.
Proof. As follows from Lusternik-Grayvs theorem [4], for any x G the exists
K(x) >0, such that B(F(2),t) e F(B(X)K(2)t)) by enough close to x, z and small
t>0. It means that there exist 6,(x) >0 and &,(x) >0, such, that

B(F(z,t) = F(B(z, K(X)t),
for [z—X|<8,(X) and 0<t<5,(x) . Taking ==K (x)t we have

B(F(Z),ﬁrj c F(B(z,7)),

by [lz—x| <&, (x) and 0<7<K(x)5,(x). Moreover, upper bound of K(x) is
equal to “[(F’(x))*]‘lu. If we assume that K(x):”[(F'(x))*]-lu and
1
a=—0 ———
sup|[(F (0)' T

0<7<6,(X) = K(X)5,(X).
Applying lemma 5 [43] or theorem 5-48 [4] we get the proof of lemma 2.
Lemma is proved.

Let X be Banach space

f:X >R =RU {+ o}, domf :{Xex:|f(x)|<+oo}, X, edomf .

we get B(F(z),ar)=F(B(z,7)) for |z—x|<&,(x) and
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Let’s define (see [2]) f ¥ (Xq;X) zﬁ (% + tXt) — f(x) ,

, £1(Xp;%) =max {f*(xo;x),—f’(xo;—x)} .

£~ (%0 %) = lim f (X +1X) = f (X))
10 t

Let |f (X0)| <+, Let’s define (see [3])

T x)=  lim fly+t9)-a

lin , where the symbol (y,a)d %
(y,@) tho ,9—X t

means, that
(y,a)eE(f):{(x,a)eXxR: f(x)Sa}, y—=>X, a— f(X).

We say, that the function f in the point x, edomf admits sublinear
approximation h(x), if h(x) sublinear semi-continous from below function and
h(x)> f'(x,;x) at xe X . Sublinear approximation h of the function f in the
point X, refers to as the main approximation, if there not exists another sublinear
approximation h,, such, that h(x)>h,(x) at xe X . Further we accept, that the
main sublinear approximation h(x) of the function f in the point X,
additionally satisfies to the inequality: h(x) < fT(xo;x) by xe X, and oh(0) we
call as a main approximate on subdifferential of the function f in the point X,
and denote by 0 f (x,) [2].

Let B” be unit spherein Y".

Theorem 2. If X and Y are Banach spaces, the condition of the theorem 1 are
satisfied, x, €intQ and F:X —Y is strictly differentiable at the point X;, then
there exists a number L > 0such, that
0e0™f(X,)+ LB F'(x).
Proof. On the base of theorem 1 there exists such L >0, that the point X, is a
minimum point for the function g(x)= f(x)+L|F(x)—F(x,)| on the set Q.
Since x, €intQ, it is easy to cheek that o0eo™g(x,). From theorem 1.2 [1]
follows that
"|F(x)- F(x0)||X:XO =BF'(x,).
Under the conditions of theorem 2 the relation
d™g(X,) 0™ f (%) + LB F'(X,),
is valid (see [2]). Therefore
0€d™f (%)) +LB F'(X,).
The theorem is proved.
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Theorem 3. Let X,Y be Banach spaces, G-open set in X and F:G—>Y,
operator, the point X, be a local minimum of the function f on the set
M={xeG:F(x)=F(x,)}, f satisfies to Lipschtz condition in the neighborhood

of the point x,, F is strictly differentiable at the point X, and F'(x,)X =Y.
Then there exists a number L >0 such, that
0ed™f(x,)+LBF'(X,).
Proof. Consider the problem
f(x) > inf, F(X)—F(x,)=0. (1)

It is clear that X, is a local minimum point also for the problem (1), i.e. there
exists sucho >0, that X, is a minimum point for the problem (1) in the &
neighborhood of this point. Taking C ={x € B(x,,9): F(x) =F(X,)}, on the base
of the lemma 1 we get that the function f(x)+Kd_(x) reaches its minimum on
B(Xy,0) in the pointX,. Since F is strong differentiable in the point X,
and F'(x,) X =Y, then as follows from theorem 2.2 [1] there exists a neighborhood
O(x,) of the pointX,, and m>0 such holds that the inequality
d. (X) <m|F(x) — F(x,)| holds forx € O(x,) . Therefore

f(X0) < F (%) + Km|F(%,)]| < f () +Kd (x) < f(x)+Km||F(x) - F(x,)]
by x € B(X,,0) NO(X,), i.e. the point X, gives minimum to the function
f(X)+Km|F(x)—F(x,)| on the set xeB(x,,6) NO(X,). Since F is strong
differentiable in the point X;, it follows from preposition 2.2.1 [3] that F
satisfies to the Lipschitz condition in the neighborhood of the point X,. Then from
the theorem 1 we have that 0ed™(f()+Km|F()—F(X,)[)xx - Applying the

theorem 1.3 and lemma 1.8 [2], we obtain that0ed™(f(x,)+KmB'F'(x,). The
theorem is proved.
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Metrik fazada ekstremum masalosi
H.S. Axundov
XULASO

Isdo metrik fozada sorti ekstremum maosalesine baxilir. Dgor mohdudiyyat operatoru
Ortiilmo xassosino malik olarsa, onda sorti ekstremum mosalosi sortsiz ekstremum
masaloasing gatirilir. Sarti ekstremum masalasinin holli {igiin zoruri sort tapilir.

Acar sozlar: Banax fozasi, ciddi diferensiallanan optimalliq sorti.

3asaya 3kcTpeMyMa B MeTPHYeCKOM NPOCTPAHCTBE
X.C. AxynnoB

PE3IOME

B pabote paccmaTpuBaercd 3agada 3KCTpeMyMa B METPHYECKOM IPOCTPAHCTBE.
Hcnone3ys TOHSATHE HAKpBIBAaHWS OMNEpaTopoB, 3ajadya Ha YCIOBHOM OSKCTPEMyM
MPUBOAMTCS K 3a7a4de Ha O0e3ycIIoBHBIN 3KcTpeMyM. Haxonures HeoOXxouMoe ycioBue JUist
pelLIeHust 3a71a41 YCIOBHOTO IKCTPEMyMa.

Koarouesnie caosa: [IpoctpanctBo banaxa, crporo mud¢epeHnnpyeMocTb, yCIoBUs
ONITHMAJIBHOCTH.
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